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FOREWORD

This report is submitted in compliance with Phase II, Task 5
(Reports) of Exhibit A, Scope of Work, dated' 29 June 1972 for
Contract NAS8-27161.

Phase II of the Contract consists of five Tasks:

Task I: Test Environment and Model Definition
Task 1I: Model Design and Fabrication

Task III: Ablator Test and Evaluation

Task IV: Conference Requirement

Task V: Reports

This report documents the studies performed under Task III:
"Ablator Test and Evaluation.”

it
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The objectives of this study were to establish the feasibility of
utilizing ablative or metallic heat shields for aerobraking reentry
and to ascertain realistic ablative heat shield weights and design
criteria for both ablative and metallic heat shields.

The ablative and metallic heat shields were for application to a
14 ft-diameter cylindrical body entry configuration with a 2:1 ellip-
tical dome, Both a low drag and high drag configuration were studied,
The high drag would be achieved by attachment of a 60° flare at the
aft end of the cylinder. The aerobraking trajectory pertained to the
transfer of the vehicle from a geosynchronous orbit to the orbit of
the Space Shuttle. Aerobraking trajectories involving two perigee
passes and 30 perigee passes were investigated.

In the performance of Task 3, "Ablator Test and Evaluation', the
following was accomplished:

1. The plasma arc facility was calibrated for selected heat pulses
with respect to cold wall heat flux to 2-1/2 and 8-in. diameter
models, enthalpy and stagnation pressure.

2. Six 2-1/2 in.-diameter models were tested under conditions
simulating "Two Pass" stagnation point heating for the low
drag configuration (3 models) and the high drag configuration
(3 models).

3., Six 8 in.~diameter models were tested under conditions simu-
lating "Thirty Pasgs' stagnation point heating for the high
drag configuration for all 30 entry passes (3 models) and for
the first 15 entry passes (3 models).

4, Tested models were sectioned and photographed. Surface reces-
sion, char depth, pyrolysis depth and char stability were
determined. Thermocouple and optical pyrometer data from the
test runs was plotted and analyzed.

5. Selected ablator specimens were analyzed for test pulse heating
and analyses were correlated with measured temperature and
char depth data.

6. Total ablator weight was determined for the elliptical dome
for both 2 pass and 30 pass entry heating.

7. Technological deficiencies of ablative heat shields for aero-
braking reentry were ascertained.



The ablator models are described in the Task B-2 Report (MCR-73-2).
The selected plasma arc test pulses are defined in the Task B-1 Report
(MCR-72-324).

Plasma arc tests were conducted in the Martin Marietta Corporation
Facility B. It is powered by two direct current silicon rectifier sys-
tems capable of providing up to 1.5 megawatts of power to the arc
generator. The facility B test chamber is a water-cooled double jacketed
cylindrical tank, 48 in., in diameter and 12 ft long. It contains two
viewing ports, located on either side along the horizontal centerline
and slightly downstream from the nozzle exit plane. Additional ports
for viewing the model front face with pyrometers or cameras are located
in the end plate, The tank is slit along the top centerline and is
flanged to support a second tank in piggyback fashion. The upper tank
houses the model/instrument support and insertion mechanism, This
mechanism contains three model holders, a calorimeter and a pitot probe.
Each can be selectively inserted, traversed laterally and longitudinally,
and retracted. It is operated from a remote control station., Tank
vacuum is provided by a 3300 cfm mechanical pumping system and by a five
stage steam ejector., A liquid oxygen and nitrogen station coupled
with a high pressure vaporizer/compressor system provides gases for
arc operation.

The arc generator is gas and magnetically stabilized Thermal Dynam-
ics Corporation F-5000 unit, It consists of a water-cooled thoriated
tungsten cathode and a cylindrical copper anode. Nitrogen is injected
tangentially at the cathode. This initiates the vortex and shields the
tungsten material against oxidation. Oxygen is injected into the anode
in a quantity to yield the chemical equivalent of air. Oxygen is in-
jected in a manner to increase the vortex strength and to mix efficiently
with the nitrogen flow.

For testing 2-1/2 in.-diameter ablator models, a 3 in. exit diameter
nozzle was used. This nozzle has an area ratio of 5.8 and operates at
a nominal Mach number of 3.0. The 10 in., exit diameter nozzle used for
testing the 8 in. diameter ablator models has an area ratio of 51.4 and
operates at a nominal Mach number of 4.6.

Test points were calibrated by recording the arc current and voltage
and the oxygen and nitrogen flow rates and by measuring cold wall heat
flux, enthalpy and pitot pressure., Heating rates were measured with a
calorimeter of the same diameter as the test model which contained a
Gardon heat flux sensor at its center. Enthalpy was computed from a
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system energy balance. Calibration data are summarized in Table 1. The
calibrated test points agree closely with the selected test conditions
defined in Figures 31, 32, 35 and 36 of Reference 1,

Six plasma arc models, 2-1/2 in. in diameter, were tested for two
pass heating. The test models are described in Table 1 and Figure 1 of
Reference 2. The proposed test conditions are shown in Figures 31 and
32 of Reference 1. The actual heating rates, enthalpies and pressures
attained in the tests are summarized in Table 2 and compared with flight
conditions and proposed test plan conditions,in Table 3. Thermocouple
output was continually recorded during the tests and during portions of
the cool-down, In addition, surface temperature was measured with a
recording optical pyrometer. Specimen response to the heat flux exposure
was monitored with a motion picture camera at a one frame per second
rate,

Time-temperature traces for thermocouples and optical pyrometers
are shown in Figures 1 through 6. In a number of instances, instrumen-
tation or equipment malfunction occurred and only partial temperature
data were obtained. In general, the temperature data obtained were very
satisfactory and duplicate specimens yielded similar temperature res-
ponses, Plasma arc models after test are shown in Figure 7. 3X enlarged
views of the ablator front face are shown in Figures 8 through 13. With
the exception of minor char loss at the model periphery, the models sus-
tained no damage during the test. The model surface consists of a crusty
gsilica layer,

IV, 30 AND 15-PASS ENTRY TESTING

Six plasma arc models, 8 in. in diameter, were tested for 30-pass
heating (3 models) and 15-pass heating (3 models). The test models are
described in Table 2 and Figure 9 of Reference 2, The proposed test
conditions are shown in Figures 35 and 36 of Reference 1. The actual
heating rates, enthalpies and pressures attained in the tests are sum-
marized in Table 4. Peak values are compared with flight conditions
and proposed test plan conditions in Table 3. Test procedures were
similar to those employed for the 2-pass heating tests.

Time-temperature traces for thermocouples and optical pyrometers
are shown for selected test pulses in Figures 14 and 15. Instrumenta-
tion or equipment malfunction occurred occasionally during the tests



and resulted in only partial data acquisition for some runs. In general,
the temperature data obtained were very good and duplicate specimens
yielded similar temperature responses. Plasma arc models after testing
are shown in Figure 16. Full size views of the ablator front face are
shown in Figures 17 through 22. Localized char loss at the model peri-
phery occurred in ESA-3560 models l.and 2 (30-pass exposures). This
char loss was due to the open honeycomb cells at the periphery which
provided only partial support for the ablator char.

V. _ABLATOR MODEL AND TEST DATA ANALYSIS

Tested models were sectioned to measure char depth and to character-
ize the nature of the char. Figures 23 through 26 show the cross-section
of 2-1/2 in.-diameter models. Each model exhibits two distinct char
cleavage planes parallel to the ablator surface. These planes represent
the depth of char formation after the first and second heating pass
respectively. The formation of a horizontal char cleavage plane is
characteristic of silicone ablators. In addition, a series of vertical
fissures is evident as a result of the shrinkage process which accompanies
char formation. The severity of the vertical fissures increases with
decreasing ablator density; i.e., the fissures are larger and more wide-
spread in the ESA-3560 and SLA-561 ablators than in the ESA-5500 ablator.
Cross-sections of 8 in.-diameter models are shown in Figures 27 through
30. The horizontal cleavage planes are also evident in the 30 and 15-
pass models. However, the vertical char fissures are less pronounced in
the 8-inch models than in the 2-1/2-inch models. This is because the
lower heat flux experienced by the 8-inch models causes less severe char
shrinkage.

Measured char depths are tabulated in Table 5. The transition from
pyrolysis zone to virgin ablator is very gradual and cannot be pinpointed.
Surface recession was also measured on the sectioned models and is listed
in Table 5. Total ablator height increased in the ESA-5500 and ESA-3560
models due to the swelling action of the silicone resin during ablationm.
The SLA-561 ablator contains a lower concentration of silicone resin than
the higher density ablators and silicone swelling is of fset by contrac-
tion of the fillers during ablation, resulting in an overall reduction
in ablator height.

Temperatures at the end of each heating pulse are presented graphic-
ally for 30-pass and 15-pass heating in Figures 31 through 36. The
first two thermocouples (at nominal depths of 0.10 and 0.30 in.) show
a steady increase in temperature for thirty-pass heating. The thermo-
couple at 0.65 in. starts to rise after the tenth pass. The thermocouple



at 1.37 in., shows only a slight increase in temperature while the back
wall thermocouple registers no temperature rise at end of heating
throughout the thirty heating cycles. Differences in temperature
response between duplicate specimens are due in part to differences

in thermocouple locations.

VI, _TEST DATA CORRELATION WITH ANALYSIS

The following specimens were analyzed for test pulse conditionms:

]

ESA-5500; 2-Pass Heating; Low Drag Simulation
ESA-3560; 2-Pass Heating; High Drag Simulation
ESA-3560; 30-Pass Heating; High Drag Simulation
ESA-3560; 15-Pass Heating; High Drag Simulation

Calculated time-temperature plots for two-pass heating are shown in
Figures 37 and 38, Time-temperature plots for 30-pass heating (Pass
30) and 15-pass heating (Pass 15) are shown in Figures 39 and 40 res-
pectively. The calculated progression of char depth and pyrolysis

zone during 30-pass and 15-pass heating is shown in Figure 41. Figures
42 and 43 show the analytically predicted temperatures for ESA-3560
models at the end of each heating pass for 30-pass and 15-pass heating
respectively. Tge initial temperature was taken as 80°F for the first
pulse and as 115 F for each subsequent pulse.

Table 5 lists the analytically predicted char thickness and pyrolysis
depth and compares predicted and measured char depth. For the 8-inch
models (30-pass and 15-pass heating), the correlation is excellent. For
the 2-1/2-inch models (2-pass heating) the measured char thicknesses
exceed calculated values by approximately 20 percent.

Table 6 compares analytically predicted and measured temperatures
at the thermocouple depths for two-pass heating. The comparison is at
the end of the first and second heating pulses and is tabulated as the
difference between the final temperature and the temperature at the
beginning of the heat pulse, The correlation is generally good within .
the ablator., On the aluminum backface, the analysis predicts no temper-
ature rise or a very small rise at the end of the heat pulges. Thg
measured temperature rise for the second heat pulse is 100" to 125°F,



Tables 7 and 8 compare analytically predicted and measured temper-
atures at the thermocouple depths for 30-pass heating and 15-pass
heating respectively. The comparison is for passes 1, 5, 15, 25, 28
and 30 for 30-pass heating and for passes 1, 4, 6, 8, 12 and 15 for
15-pass heating. The data are tabulated as the difference between the
temperature at the end of heating and the temperature at the beginning
of the heat pulse. Measured surface temperatures were higher than the
calculated values. Temperature correlation within the ablator and on
the aluminum backface is satisfactory.

Table 9 lists the peak backwall temperature reached after the final
test pulse in each of the models and compares the measured temperature
rise (peak temperature minus temperature at start of the final heating
pass) with the analytically predicted rise. In a number of instances,
test data was not acquired and computer runs were not extended for a
sufficiently long time period to obtain the temperature peak. In that
case, the last measured or calculated temperature is listed in Table 9.
As was the case for char depth, agreement is good for the 8-inch models
while for the 2-1/2-inch models, the measured temperature rise is con-
sistently higher than the calculated value.

The poor correlation for the 2-1/2-inch models is attributable to
the specimen configuration. The assumption of one-dimensional heat
flow, while it applies to the center of the 8-inch model, is not really
valid for 1.36 in. and 2.03 in. high 2-1/2-in.-diameter models where the
model center is only 1.25 inch from the periphery. 1In these models,
backface tsmperatures are influenced by side heating, Since the desired
120 BTU/ft“-sec heating rate could not be attained with models of greater
than 2-1/2 in., diameter, this model size was selected even though it was
recognized that the model height-to-diameter ratio was nonoptimum, The
good agreement between measured and calculated temperatures in the abla-
tor at end of heating (Table 6) verifies the analysis for two-pass entry
heating.

VII. ABLATIVE HEAT SHIELD WEIGHTS
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Ablative heat shield weights have been calculated for low drag and
high drag configurations flying two-pass and 30-pass aerobraking trajec-
tories and for different heat shield materials and material combinationﬁ.
The surface area of the elliptical dome was calculated to be 30,694 in.".
Figure 44 is a plot of dome area as a function of distance from the
stagnation point (Semi Arc Length). The length of the semi-arc of the
2:1 elliptical dome with a 84-in. semi-major axis is 101.8 inch.



Ablator thickness requirements were determined as a function of
dome location (semi-arc length). Required data were the "Heating Rate
Distribution for a 2:1 Ellipse" (Figure 8 of Reference 1) and the
YAblator Design Curves for Two-Pass and 30-Pass Entry Missions"
(Figures 45 and 46). Curves showing ablator thickness vs semi-arc
length are presented in Figure 47, The reduced ablator thickness near
the stagnation point is due to the greater mass of the aluminum backup
structure at that location,

Figure 48, Ablator Thickness vs Dome Area, is constructed from
Figure 47. The integrals (areas under the curves) for Figure 48 are
the total ablator volumes in cubic inches. By converting the ablator
volume to units of cubic feet and multiplying by the density in 1b/ft~,
the total ablator weights are obtained. These ablator weights are
tabulated in Table 10.

The heating rate across the elliptical dome varies from 1007 to
less than 107 of stagnation point heating. Therefore, the use of a
single ablation material over the entire dome provides a nonoptimum
design from the we}ght standpoint, The three ablation ma.terials3
ESA-5500 (55 1b/ft”), ESA-3560 (30 1lb/ft”) and SLA-561 (15 1lb/ft”)
use the same gilicone resin system and are contained in the same
honeycomb reinforcement core. They are therefore mutually compatible
and can be used in combination. The following criteria are used for
composite ablator designs: '

ESA-5500 - § > 100 BTU/£t%-sec
<

ESA-3560 - 25 < § < 100 BTU/ft’-sec

SLA-561 - q < 25 BTU/ftz-sec

The locations of ablator interfaces in composite designs are shown in
Figures 47 and 48. The weight of composite designs are listed in
Table 10.

For the 2-pass entry--low drag heating environment, an ESA-3560
ablative heat shield (weight = 713 1b) is the recommended design.
Plgsma arc testing has shown that ESA-3560 can withstand the 125 BTU/
ft“-sec peak heating rate at the stagnation point. An all ESA-3560
heat shield weighs only one-half as much as a composite ESA-5500/ESA-3560
heat shield.

For 2-pass--high drag heating, a composite ESA-3560/SLA-561 heat
shield (weight = 622 1b) is the recommended design, The weight of an
all ESA-3560 heat shield is 97 greater. An all SLA-561 heat shield
(weight = 379 1b) is a potential candidate since plasma arc tests have
shown that this material can withstand the heating environment. However,
the weak char structure of SLA-561 requires further testing and eval-
uation to qualify the material for this mission. '



A composite ESA-3560/SLA-561 heat shield (weight = 859 1b) is also
the recommended design for the 30-pass-low drag mission. Similarly to
the 2-pass-high drag mission, an all SLA-561 heat shield holds promise
of meeting flight requirements with a large resultant weight saving.

For the 30-pass--high drag heating environment, an all SLA-561
heat shield (weight - 437 1b) is the recommended design. An ESA-3560
heat shield is more than twice as heavy.
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Two-pass and 30-pass plasma arc testing revealed that the ablators
tested are capable of withstanding the aerobraking heating environment.
Char loss only occurred at the periphery of the models where the honey-
comb cells are cut. The char of all three ablators contained char fis-
sures both parallel and perpendicular to the ablator surface, This is
characteristic of silicone ablators and a fissure plane is always present
at the interface between the char and the pyrolysis zone. The char is
retained primarily by its adhesion to the honeycomb cell walls, The
addition of glass or silica fibers of at least 1/4-in. length to the
ablator provides a mechanism for bridging fissures. All three ablators
contain fibers; however, for multipass heating, a higher fiber concen-
tration may be preferred.

ESA-3560 and ESA-5500 ablators tend to swell during ablative degra-
dation due to the swelling action of the silicone resin. SLA-561, on
the other hand, contains a much lower percentage of silicone resin in
relationship to fillers and the swelling tendency of the resin is counter-
acted by the shrinkage of the fillers during ablation such that the net
effect is one of char shrinkage. A silicone ablator intermediate in
density and resin content between ESA-3560 and SLA-561 could be formu-
lated such that no volumetric change occurs during char formation. Such
an ablator would be optimum from a char stability standpoint for multi-
pass thermal protection.

Thermal and ablative properties of all three ablators are well
characterized. Ablation analysis used in conjunction with these pro-
perties provides a very satisfactory ability to determine ablator
thickness requirements for a given flight trajectory and to predict
internal ablator and backface temperature rise during thermal exposure.

Technological deficiencies for ablators in multi-pass heating environ-
ments are primarily associated with uncertainties arising from the fact
that a number of environmental parameters were not investigated in the
test program, These environmental factors include:



Cold Soak: Charred ablators may be subjected to cold soak
conditions during orbital space flight between entry heating
passes. Thermal contractions during cold soak could propagate
fissures in the ablator char and lead to more extensive cracking
and char erosion during subsequent entries.

Vibration: Acoustic noise or vibrations resulting from entry

or from attitude control rocket firings may be detrimental to

the ablator char. The magnitude of the acoustic and vibration
environment associated with aerobraking entry is as yet unde-

fined.

Shear: Aerodynamic shear forces can, dislodge the ablator char.
Shear at the corner of the elliptical dome must be considered
in final ablator selection.

Pressure: Char recession is a function of heating rate and
pressure, While tests were conducted at peak heating rate
levels, pressures were only 50 percent of flight conditions.
The effects of full flight pressure in conjunction with peak
heating rates on char performance must be evaluated experi-
mentally.

Atmospheric Variations, Trajectory Dispersions and Safety
Factors: Tests simulated nominal conditions for aerobraking
entry. However, the heating rates, pressures and shears used

in design of flight hardware must be higher than nominal values
to account for atmospheric variations and trajectory dispersions.

While there is no reason to believe that silicone ablators will not
perform satisfactorily when the above environmental factors are taken
into consideration; nevertheless, the materials must be qualified by
tests for the full flight environment, These tests should include:

Multipass plasma arc testing with intermittent cold soak;
Plasma arc shear flow tests;
Vibration testing of charred ablators;

Tests at full design heating rates and pressure rather than
for nominal conditions;

Tests at higher than design heating rate, pressure and shear
values to establish safety margins and reliability.
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Table 9 - Comparison of Analytically Predicted and Measured Peak
Backface Temperatures for Multi-Pass Heating

Initial |(Peak Backface Time of Peak
' Temperature | Tempera- Temper- Temperature
Model and Material for ture for ature (from start
?1na% Pass Fina% Pass Diffsrence of final
(CF) CF) CF) pass - sec)
2-Pass; Low Drag
Analysis; ESA-5500 115 177* 62 1160%**
Model 1; ESA-5500 - - - -
Model 2; ESA-5500 93 250 157 1026
Model 5; ESA-3560 102 292 190 510
2-Pass; High Drag ‘
Analysis; ESA-3560 175 282 107 1072
Model 3; ESA-3560 80 349 269 795
Model 4; ESA-3560 93 364 271 845
Model 6; SLA-561 93 278 185 435
30-Pass; High Drag
Analysis; ESA-3560 115 170% 55 1650%*
Model 1; ESA-3560 140 171* 31 1200**
Model 2; ESA-3560 82 144* 62 1200%*
Model 5; SLA-561 - 91 168 77 900
15-Pass; High Drag
Analysis; ESA-3560 115 115*% 0 280%*
Model 3; ESA-3560 142 164 22 1440
Model 4; ESA-3560 98 123* 25 1050
Model 6; SLA-561 93 139* 46 1150

*Backface temperature still rising gradually

**Last data point
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Figure 17
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Figure 23 - Cross-Section of ESA-3560 Models After Exposure to Two-Pass,
High Drag Heating
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Figure 24 - Cross-Section of ESA-5500 Models After Exposure to Two-Pass,
Low Drag Heating
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Figure 25 - Cross-Section of ESA-3560 Model After Exposure to Two-Pass,
Low Drag Heating

Figure 26 - Cross-Section of SLA-561 Model After Exposure to Two-Pass,
High Drag Heating
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Figure 28 - Cross-Section of ESA-3560 Model No. 3 After 15-Pass Heating
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ESA-3560
30-Pass Heating

ESA-3560
15-Pass Heating

SLA-561
30-Pass Heating

Figure 30 - Cross-Section of Models After 30-Pass and 15-Pass Heating
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Figure 33 - Variation of Temperature at End of Heating with Entry Pass for
ESA-3560, Model No. 3, 15-Pass Heating
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Figure 34 - Variation of Temperature at End of Heating with Entry Pass for
ESA-3560, Model No. 4, 15-Pass Heating
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Figure 36 - Variation of Temperature at End of Heating with Entry Pass for
SLA-561, Model No. 6, 15-Pass Heating
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Figure 40 - Time-Temperature Traces for Analysis of ESA-3560 for Pass 15
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Figure 43 - Variation of Calculated Temperature at End of Heating with Entry Pass
for ESA~3560, 15-Pass Heating
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Figure 44 - Cumulative Dome Area for 2:-1 Ellipse with a 84-inch Semi-Major Axis
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Figure 47 - Variation of Ablator Thickness with Location on the Elliptical Dome
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Figure 47 - Continued
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Figure 48 - Variation of Ablator Thickness with Dome Surface Area
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